
DRAFT

PyData CookBook 1

Signal Processing with SciPy: Linear Filters
Warren Weckesser∗

F

Abstract—The SciPy library is one of the core packages of the PyData stack.
It includes modules for statistics, optimization, interpolation, integration, linear
algebra, Fourier transforms, signal and image processing, ODE solvers, special
functions, sparse matrices, and more. In this chapter, we demonstrate many
of the tools provided by the signal subpackage of the SciPy library for the
design and analysis of linear filters for discrete-time signals, including filter
representation, frequency response computation and optimal FIR filter design.

Index Terms—algorithms, signal processing, IIR filter, FIR filter

CONTENTS

Introduction . 1
IIR filters in scipy.signal 1

IIR filter representation 2
Lowpass filter 3
Initializing a lowpass filter 5
Bandpass filter 5
Filtering a long signal in batches 6
Solving linear recurrence relations . . . 6

FIR filters in scipy.signal 7
Apply a FIR filter 7
Specialized functions that are FIR filters 8
FIR filter frequency response 8
FIR filter design 8
FIR filter design: the window method . 8
FIR filter design: least squares 9
FIR filter design: Parks-McClellan . . . 10
FIR filter design: linear programming . 10
Determining the order of a FIR filter . . 13
Kaiser’s window method 13
Optimizing the FIR filter order 13

References 14

Introduction

The SciPy library, created in 2001, is one of the core pack-
ages of the PyData stack. It includes modules for statistics,
optimization, interpolation, integration, linear algebra, Fourier
transforms, signal and image processing, ODE solvers, special
functions, sparse matrices, and more.

The signal subpackage within the SciPy library includes
tools for several areas of computation, including signal pro-
cessing, interpolation, linear systems analysis and even some
elementary image processing. In this Cookbook chapter, we

∗ Corresponding author: warren.weckesser@gmail.com

Copyright c○ 2016 Warren Weckesser.

focus on a specific subset of the capabilities of of this sub-
package: the design and analysis of linear filters for discrete-
time signals. These filters are commonly used in digital signal
processing (DSP) for audio signals and other time series data
with a fixed sample rate.

The chapter is split into two main parts, covering the two
broad categories of linear filters: infinite impulse response
(IIR) filters and finite impulse response (FIR) filters.

Note. We will display some code samples as transcripts
from the standard Python interactive shell. In each interactive
Python session, we will have executed the following without
showing it:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> np.set_printoptions(precision=3, linewidth=50)

Also, when we show the creation of plots in the transcripts, we
won’t show all the other plot commands (setting labels, grid
lines, etc.) that were actually used to create the corresponding
figure in the paper. Complete scripts for all the figures in
this paper are available in the papers/scipy directory at
https://github.com/pydata/pydata-cookbook/.

IIR filters in scipy.signal

An IIR filter can be written as a linear recurrence relation,
in which the output yn is a linear combination of xn , the M
previous values of x and the N previous values of y:

a0yn =
M

∑
i=0

bixn−i −
N

∑
i=1

aiyn−N (1)

(See, for example, Oppenheim and Schafer [OS], Chapter 6.
Note, however, that the sign convention for a[1], ...,
a[N] in Eqn. (1) and used in SciPy is the opposite of that
used in Oppenheim and Schafer.)

By taking the z-transform of Eqn. (1), we can express the
filter as

Y (z) = H(z)X(z) (2)

where

H(z) =
b0 +b1z−1 + · · ·+bM z−M

a0 +a1z−1 + · · ·+aN z−N (3)

is the transfer function associated with the filter. The functions
in SciPy that create filters generally set a0 = 1.

Eqn. (1) is also known as an ARMA(N, M) process,
where "ARMA" stands for Auto-Regressive Moving Average.
b holds the moving average coefficients, and a holds the auto-
regressive coefficients.

http://scipy.org/scipylib/index.html
http://scipy.org/scipylib/index.html
mailto:warren.weckesser@gmail.com

DRAFT

2 PyData CookBook

When a1 = a2 = · · · = aN = 0, the filter is a finite impulse
response filter. We will discuss those later.

IIR filter representation

In this section, we discuss three representations of a linear
filter:
• transfer function
• zeros, poles, gain (ZPK)
• second order sections (SOS)
SciPy also provides a state space representation, but we

won’t discuss that format here.
Transfer function. The transfer function representation of

a filter in SciPy is the most direct representation of the
data in Eqn. (1) or (3). It is two one-dimensional arrays,
conventionally called b and a, that hold the coefficients of the
polynomials in the numerator and denominator, respectively,
of the transfer function H(z).

For example, we can use the function
scipy.signal.butter to create a Butterworth lowpass
filter of order 6 with a normalized cutoff frequency of 1/8
the Nyquist frequency. The default representation created by
butter is the transfer function, so we can use butter(6,
0.125):
>>> from scipy.signal import butter
>>> b, a = butter(6, 0.125)
>>> b
array([2.883e-05, 1.730e-04, 4.324e-04,

5.765e-04, 4.324e-04, 1.730e-04,
2.883e-05])

>>> a
array([1. , -4.485, 8.529, -8.779, 5.148,

-1.628, 0.217])

The representation of a filter as a transfer function with coef-
ficients (b, a) is convenient and of theoretical importance,
but with finite precision floating point, applying an IIR filter
of even moderately large order using this format is susceptible
to instability from numerical errors. Problems can arise when
designing a filter of high order, or a filter with very narrow
pass or stop bands.

ZPK. The ZPK representation consists of a tuple containing
three items, (z, p, k). The first two items, z and p,
are one-dimensional arrays containing the zeros and poles,
respectively, of the transfer function. The third item, k, is a
scalar that holds the overall gain of the filter.

We can tell butter to create a filter using the ZPK
representation by using the argument output="zpk":
>>> z, p, k = butter(6, 0.125, output=’zpk’)
>>> z
array([-1., -1., -1., -1., -1., -1.])
>>> p
array([0.841+0.336j, 0.727+0.213j,

0.675+0.072j, 0.675-0.072j,
0.727-0.213j, 0.841-0.336j])

>>> k
2.8825891944002783e-05

A limitation of the ZPK representation of a filter is that SciPy
does not provide functions that can directly apply the filter to
a signal. The ZPK representation must be converted to either
the SOS format or the transfer function format to actually filter
a signal. If we are designing a filter using butter or one of

the other filter design functions, we might as well create the
filter in the transfer function or SOS format when the filter is
created.

SOS. In the second order sections (SOS) representation, the
filter is represented using one or more cascaded second order
filters (also known as "biquads"). The SOS representation is
implemented as an array with shape (n, 6), where each row
holds the coefficients of a second order transfer function. The
first three items in a row are the coefficients of the numerator
of the biquad’s transfer function, and the second three items
are the coefficients of the denominator.

The SOS format for an IIR filter is more numerically stable
than the transfer function format, so it should be preferred
when using filters with orders beyond, say, 7 or 8, or when
the bandwidth of the passband of a filter is sufficiently small.
(Unfortunately, we don’t have a precise specification for what
"sufficiently small" is.)

A disadvantage of the SOS format is that the function
sosfilt (at least at the time of this writing) applies an SOS
filter by making multiple passes over the data, once for each
second order section. Some tests with an order 8 filter show
that sosfilt(sos, x) can require more than twice the
time of lfilter(b, a, x).

Here we create a Butterworth filter using the SOS represen-
tation:

>>> sos = butter(6, 0.125, output="sos")
>>> sos
array([[2.883e-05, 5.765e-05, 2.883e-05,

1.000e+00, -1.349e+00, 4.602e-01],
[1.000e+00, 2.000e+00, 1.000e+00,

1.000e+00, -1.454e+00, 5.741e-01],
[1.000e+00, 2.000e+00, 1.000e+00,

1.000e+00, -1.681e+00, 8.198e-01]])

The array sos has shape (3, 6). Each row represents a biquad;
for example, the transfer function of the biquad stored in the
last row is

H(z) =
1+2z−1 + z−2

1−1.681z−1 +0.8198z−2

Converting between representations. The signal module
provides a collection of functions for converting one represen-
tation to another:

sos2tf, sos2zpk, ss2tf, ss2zpk,
tf2sos, tf2zz, tf2zpk, zpk2sos, zpk2ss, zpk2tf

For example, zpk2sos converts from the ZPK representation
to the SOS representation. In the following, z, p and k have
the values defined earlier:

>>> from scipy.signal import zpk2sos
>>> zpk2sos(z, p, k)
array([[2.883e-05, 5.765e-05, 2.883e-05,

1.000e+00, -1.349e+00, 4.602e-01],
[1.000e+00, 2.000e+00, 1.000e+00,

1.000e+00, -1.454e+00, 5.741e-01],
[1.000e+00, 2.000e+00, 1.000e+00,

1.000e+00, -1.681e+00, 8.198e-01]])

Limitations of the transfer function representation. Earlier
we said that the transfer function representation of moderate to
large order IIR filters can result in numerical problems. Here
we show an example.

DRAFT

SIGNAL PROCESSING WITH SCIPY: LINEAR FILTERS 3

0 20 40 60 80 100 120
Sample number

6

4

2

0

Fig. 1: Incorrect step response of the Butterworth bandpass filter
of order 10 created using the transfer function representation. Ap-
parently the filter is unstable--something has gone wrong with this
representation.

We consider the design of a Butterworth bandpass filter with
order 10 with normalized pass band cutoff frequencies of 0.04
and 0.16.:

>>> b, a = butter(10, [0.04, 0.16], btype="bandpass")

We can compute the step response of this filter by applying it
to an array of ones:

>>> x = np.ones(125)
>>> y = lfilter(b, a, x)
>>> plt.plot(y)

The plot is shown in Figure 1. Clearly something is going
wrong.

We can try to determine the problem by checking the poles
of the filter:

>>> z, p, k = tf2zpk(b, a)
>>> np.abs(p)
array([0.955, 0.955, 1.093, 1.093, 1.101,

1.052, 1.052, 0.879, 0.879, 0.969,
0.969, 0.836, 0.836, 0.788, 0.788,
0.744, 0.744, 0.725, 0.725, 0.723])

The filter should have all poles inside the unit circle in the
complex plane, but in this case five of the poles have mag-
nitude greater than 1. This indicates a problem, which could
be in the result returned by butter, or in the conversion
done by tf2zpk. The plot shown in Figure 1 makes clear
that something is wrong with the coefficients in b and a.

Let’s design the same 10th order Butterworth filter as above,
but in the SOS format:

>>> sos = butter(10, [0.04, 0.16],
... btype="bandpass", output="sos")

In this case, all the poles are within the unit circle:

>>> z, p, k = sos2zpk(sos)
>>> np.abs(p)
array([0.788, 0.788, 0.8 , 0.8 , 0.818,

0.818, 0.854, 0.854, 0.877, 0.877,
0.903, 0.903, 0.936, 0.936, 0.955,
0.955, 0.964, 0.964, 0.988, 0.988])

We can check the frequency response using
scipy.signal.sosfreqz:

>>> w, h = sosfreqz(sos, worN=8000)
>>> plt.plot(w/np.pi, np.abs(h))
[<matplotlib.lines.Line2D at 0x109ae9550>]

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

Ga
in

0.0 0.2 0.4 0.6 0.8 1.0
Normalized frequency

/2

0

/2

Ph
as

e
Fig. 2: Frequency response of the Butterworth bandpass filter with
order 10 and normalized cutoff frequencies 0.04 and 0.16.

0 50 100 150 200
Sample number

0.2

0.0

0.2

Fig. 3: Step response of the Butterworth bandpass filter with order
10 and normalized cutoff frequencies 0.04 and 0.16.

The plot is shown in Figure 2.
As above, we compute the step response by filtering an array

of ones:
>>> x = np.ones(200)
>>> y = sosfilt(sos, x)
>>> plt.plot(y)

The plot is shown in Figure 3. With the SOS representation,
the filter behaves as expected.

In the remaining examples of IIR filtering, we will use only
the SOS representation.

Lowpass filter

Figure 4 shows a times series containing pressure measure-
ments [SO]. At some point in the interval 20 < t < 22, an event
occurs in which the pressure jumps and begins oscillating
around a "center". The center of the oscillation decreases and
appears to level off.

We are not interested in the oscillations, but we are
interested in the mean value around which the signal is

DRAFT

4 PyData CookBook

20 25 30
0

2

4

6

8

10
Pr

es
su

re
 (M

Pa
)

20 25 30
Time (ms)

0

5

10

15

20

25

Fr
eq

ue
nc

y
(k

Hz
)

Fig. 4: Top: Pressure, for the interval 15 < t < 35 (milliseconds).
Bottom: Spectrogram of the pressure time series (generated using a
window size of 1.6 milliseconds).

oscillating. To preserve the slowly varying behavior while
eliminating the high frequency oscillations, we’ll apply a low-
pass filter. To apply the filter, we can use either sosfilt
or sosfiltfilt from scipy.signal. The function
sosfiltfilt is a forward-backward filter--it applies the
filter twice, once forward and once backward. This effectively
doubles the order of the filter, and results in zero phase shift.
Because we are interesting in the "event" that occurs in 20 <
t < 22, it is important to preserve the phase characteristics of
the signal, so we use sosfiltfilt.

The following code snippet defines two convenience func-
tions. These functions allow us to specify the sampling fre-
quency and the lowpass cutoff frequency in whatever units are
convenient. They take care of scaling the values to the units
expected by scipy.signal.butter.

from scipy.signal import butter, sosfiltfilt

def butter_lowpass(cutoff, fs, order):
normal_cutoff = cutoff / (0.5*fs)
sos = butter(order, normal_cutoff,

btype=’low’, output=’sos’)
return sos

def butter_lowpass_filtfilt(data, cutoff, fs,
order):

sos = butter_lowpass(cutoff, fs, order=order,
output=’sos’)

y = sosfiltfilt(sos, data)
return y

The results of filtering the data using sosfiltfilt are
shown in Figure 5.

20 25 30
0

2

4

6

8

10

Pr
es

su
re

 (M
Pa

)
20 25 30

Time (ms)

0

5

10

15

20

25

Fr
eq

ue
nc

y
(k

Hz
)

Fig. 5: Top: Filtered pressure, for the interval 15 < t < 35
(milliseconds). The light gray curve is the unfiltered data. Bottom:
Spectrogram of the filtered time series (generated using a window
size of 1.6 milliseconds). The dashed line is at 1250 Hz.

Comments on creating a spectrogram. A spectrogram is
a plot of the power spectrum of a signal computed repeatedly
over a sliding time window. The spectrograms in Figures 4 and
5 were created using spectrogram from scipy.signal
and pcolormesh from matplotlib.pyplot. The func-
tion spectrogram has several options that control how the
spectrogram is computed. It is quite flexible, but obtaining a
plot that effectively illustrates the time-varying spectrum of a
signal sometimes requires experimentation with the parame-
ters. In keeping with the "cookbook" theme of this book, we
include here the details of how those plots were generated.

Here is the essential part of the code that computes the
spectrograms. pressure is the one-dimensional array of
measured data.

fs = 50000
nperseg = 80
noverlap = nperseg - 4
f, t, spec = spectrogram(pressure, fs=fs,

nperseg=nperseg,
noverlap=noverlap,
window=’hann’)

The spectrogram for the filtered signal is computed with the
same arguments:

f, t, filteredspec = spectrogram(pressure_filtered,
...)

Notes:
• fs is the sample rate, in Hz.
• spectrogram computes the spectrum over a sliding

DRAFT

SIGNAL PROCESSING WITH SCIPY: LINEAR FILTERS 5

segment of the input signal. nperseg specifies the
number of time samples to include in each segment.
Here we use 80 time samples (1.6 milliseconds). This is
smaller than the default of 256, but it provides sufficient
resolution of the frequency axis for our plots.

• noverlap is the length (in samples) of the overlap of
the segments over which the spectrum is computed. We
use noverlap = nperseq - 4; in other words, the
window segments slides only four time samples (0.08
milliseconds). This provides a fairly fine resolution of
the time axis.

• The spectrum of each segment of the input is computed
after multiplying it by a window function. We use the
Hann window.

The function spectrogram computes the data to be
plotted. Next, we show the code that plots the spectrograms
shown in Figures 4 and 5. First we convert the data to decibels:

spec_db = 10*np.log10(spec)
filteredspec_db = 10*np.log10(filteredspec)

Next we find the limits that we will use in the call to
pcolormesh to ensure that the two spectrograms use the
same color scale. vmax is the overall max, and vmin is set
to 80 dB less than vmax. This will suppress the very low
amplitude noise in the plots.

vmax = max(spec_db.max(), filteredspec_db.max())
vmin = vmax - 80.0

Finally, we plot the first spectrogram using pcolormesh():

cmap = plt.cm.coolwarm
plt.pcolormesh(1000*t, f/1000, spec_db,

vmin=vmin, vmax=vmax,
cmap=cmap, shading=’gouraud’)

An identical call of pcolormesh with filteredspec_db
generates the spectrogram in Figure 5.

Initializing a lowpass filter

By default, the initial state of an IIR filter as implemented in
lfilter or sosfilt is all zero. If the input signal does
not start with values that are zero, there will be a transient
during which the filter’s internal state "catches up" with the
input signal.

Here is an example. The script generates the plot shown in
Figure 6.

import numpy as np
from scipy.signal import butter, sosfilt, sosfilt_zi
import matplotlib.pyplot as plt

n = 101
t = np.linspace(0, 1, n)
np.random.seed(123)
x = 0.45 + 0.1*np.random.randn(n)

sos = butter(8, 0.125, output=’sos’)

Filter using the default initial conditions.
y = sosfilt(sos, x)

Filter using the state for which the output
is the constant x[:4].mean() as the initial
condition.

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

Filter with different initial conditions

x
y (zero ICs)
y2 (mean(x[:4]) ICs)

Fig. 6: A demonstration of two different sets of initial conditions for
a lowpass filter. The orange curve is the output of the filter with zero
initial conditions. The green curve is the output of the filter initialized
with a state associated with the mean of the first four values of the
input x.

zi = x[:4].mean() * sosfilt_zi(sos)
y2, zo = sosfilt(sos, x, zi=zi)

Plot everything.
plt.plot(t, x, alpha=0.75, linewidth=1, label=’x’)
plt.plot(t, y, label=’y (zero ICs)’)
plt.plot(t, y2, label=’y2 (mean(x[:4]) ICs)’)

plt.legend(framealpha=1, shadow=True)
plt.grid(alpha=0.25)
plt.xlabel(’t’)
plt.title(’Filter with different ’

’initial conditions’)
plt.show()

By setting zi=x[:4].mean() * sosfilt_zi(sos),
we are, in effect, making the filter start out as if it had been
filtering the constant x[:4].mean() for a long time. There
is still a transient associated with this assumption, but it is
usually not as objectionable as the transient associated with
zero initial conditions.

This initialization is usually not needed for a bandpass or
highpass filter. Also, the forward-backward filters implemented
in filtfilt and sosfiltfilt already have options for
controlling the initial conditions of the forward and backward
passes.

Bandpass filter

In this example, we will use synthetic data to demonstrate a
bandpass filter. We have 0.03 seconds of data sampled at 4800
Hz. We want to apply a bandpass filter to remove frequencies
below 400 Hz or above 1200 Hz.

Just like we did for the lowpass filter, we define two
functions that allow us to create and apply a Butterworth
bandpass filter with the frequencies given in Hz (or any other
units). The functions take care of scaling the values to the
normalized range expected by scipy.signal.butter.

from scipy.signal import butter, sosfilt

def butter_bandpass(lowcut, highcut, fs, order):

DRAFT

6 PyData CookBook

0 500 1000 1500 2000
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Ga
in

lowcut: 400 Hz
highcut: 1200 Hz

Amplitude response for
Butterworth bandpass filters

order = 3
order = 6
order = 12

2/2

Fig. 7: Amplitude response for a Butterworth bandpass filter with
several different orders.

nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
sos = butter(order, [low, high], btype=’band’,

output=’sos’)
return sos

def butter_bandpass_filt(data, lowcut, highcut,
fs, order):

sos = butter_bandpass(lowcut, highcut, fs,
order)

y = sosfilt(sos, data)
return y

First, we’ll take a look at the frequency response of
the Butterworth bandpass filter with order 3, 6, and 12.
The code that generates Figure 7 demonstrates the use of
scipy.signal.sosfreqz:

for order in [3, 6, 12]:
sos = butter_bandpass(lowcut, highcut, fs, order)
w, h = sosfreqz(sos, worN=2000)
plt.plot((fs*0.5/np.pi)*w, abs(h), ’k’,

alpha=(order+1)/13,
label="order = %d" % order)

Figure 8 shows the input signal and the filtered signal. The
order 12 bandpass Butterworth filter was used. The plot shows
the input signal x; the filtered signal was generated with

y = butter_bandpass_filt(x, lowcut, highcut, fs,
order=12)

where fs = 4800, lowcut = 400 and highcut =
1200.

Filtering a long signal in batches

The function lfilter applies a filter to an array that is
stored in memory. Sometimes, however, the complete signal

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Time (seconds)

0.025

0.000

0.025

0.050

0.075

0.100

0.125 Noisy signal
Filtered signal

Fig. 8: Original noisy signal and the filtered signal. The order 12
Butterworth bandpass filter shown in Figure 7 was used.

to be filtered is not available all at once. It might not fit in
memory, or it might be read from an instrument in small blocks
and it is desired to output the filtered block before the next
block is available. Such a signal can be filtered in batches,
but the state of the filter at the end of one batch must be
saved and then restored when lfilter is applied to the next
batch. Here we show an example of how the zi argument of
lfilter allows the state to be saved and restored. We will
again use synthetic data generated by the same function used
in the previous example, but for a longer time interval.

A pattern that can be used to filter an input signal x in
batches is shown in the following code. The filtered signal is
stored in y. The array sos contains the filter in SOS format,
and is presumed to have already been created.

batch_size = N # Number of samples per batch

Array of initial conditions for the SOS filter.
z = np.zeros((sos.shape[0], 2))

Preallocate space for the filtered signal.
y = np.empty_like(x)

start = 0
while start < len(x):

stop = min(start + batch_size, len(x))
y[start:stop], z = sosfilt(sos, x[start:stop],

zi=z)
start = stop

In this code, the next batch of input is fetched by simply
indexing x[start:stop], and the filtered batch is saved by
assigning it to y[start:stop]. In a more realistic batch
processing system, the input might be fetched from a file, or
directly from an instrument, and the output might be written
to another file, or handed off to another process as part of a
batch processing pipeline.

Solving linear recurrence relations

Variations of the question:

How do I speed up the following calculation?

y[i+1] = alpha*y[i] + c*x[i]

DRAFT

SIGNAL PROCESSING WITH SCIPY: LINEAR FILTERS 7

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Time (seconds)

0.025

0.000

0.025

0.050

0.075

0.100

0.125 Noisy signal
Filtered signal

Fig. 9: Original noisy signal and the filtered signal. The order 12
Butterworth bandpass filter shown in Figure 7 was used. The signal
was filtered in batches of size 72 samples (0.015 seconds). The
alternating light and dark blue colors of the filtered signal indicate
batches that were processed in separate calls to sosfilt.

often arise on mailing lists and online forums. Sometimes
more terms such as beta*y[i-1] or d*x[i-1] are in-
cluded on the right. These recurrence relations show up in, for
example, GARCH models and other linear stochastic models.
Such a calculation can be written in the form of Eqn. (1), so
a solution can be computed using lfilter.

Here’s an example that is similar to several questions
that have appeared on the programming Q&A website
stackoverflow.com. The one-dimensional array h is an
input, and alpha, beta and gamma are constants:
y = np.empty(len(h))
y[0] = alpha
for i in np.arange(1, len(h)):

y[i] = alpha + beta*y[i-1] + gamma*h[i-1]

To use lfilter to solve the problem, we have to translate
the linear recurrence:
y[i] = alpha + beta*y[i-1] + gamma*h[i-1]

into the form of Eqn. (1), which will give us the coefficients
b and a of the transfer function. Define:
x[i] = alpha + gamma*h[i]

so the recurrence relation is:
y[i] = x[i-1] + beta*y[i-1]

Compare this to Eqn. (1); we see that a0 = 1, a1 =−beta, b0 =
0 and b1 = 1. So we have our transfer function coefficients:
b = [0, 1]
a = [1, -beta]

We also have to ensure that the initial condition is set correctly
to reproduce the desired calculation. We want the initial
condition to be set as if we had values x[-1] and y[-1],
and y[0] is computed using the recurrence relation. Given
the above recurrence relation, the formula for y[0] is:
y[0] = x[-1] + beta*y[-1]

We want y[0] to be alpha, so we’ll set y[-1] = 0 and
x[-1] = alpha. To create initial conditions for lfilter
that will set up the filter to act like it had just operated on
those previous values, we use scipy.signal.lfiltic:
zi = lfiltic(b, a, y=[0], x=[alpha])

The y and x arguments are the "previous" values that
will be used to set the initial conditions. In general,
one sets y=[y[-1], y[-2], ..] and x=[x[-1],
x[-2], ...], giving as many values as needed to deter-
mine the initial condition for lfilter. In this example, we
have just one previous value for y and x.

Putting it all together, here is the code using lfilter that
replaces the for-loop shown above:
b = [0, 1]
a = [1, -beta]
zi = lfiltic(b, a, y=[0], x=[alpha])
y, zo = lfilter(b, a, alpha + gamma*h, zi=zi)

FIR filters in scipy.signal

A finite impulse response filter is basically a weighted moving
average. Given an input sequence xn and the M + 1 filter
coefficients {b0 , . . . ,bM}, the filtered output yn is computed
as the discrete convolution of x and b:

yn =
M

∑
i=0

bixn−i = (b∗ x)n (4)

where ∗ is the convolution operator. M is the order of the filter;
a filter with order M has M+1 coefficients. It is common to
say that the filter has M+1 taps.

Apply a FIR filter

To apply a FIR filter to a signal, we can use
scipy.signal.lfilter with the denominator set
to the scalar 1, or we can use one of the convolution
functions available in NumPy or SciPy, such as
scipy.signal.convolve. For a signal {x0 ,x1 , . . . ,xS−1}
of finite length S, Eq. (4) doesn’t specify how to compute
the result for n < M. The convolution functions in NumPy
and SciPy have an option called mode for specifying
how to handle this. For example, mode=’valid’ only
computes output values for which all the values of xi in
Eq. 4 are defined, and mode=’same’ in effect pads the
input array x with zeros so that the output is the same length
as the input. See the docstring of numpy.convolve or
scipy.signal.convolve for more details.

For example,

from scipy.signal import convolve

Make a signal to be filtered.
np.random.seed(123)
x = np.random.randn(50)
taps is the array of FIR filter coefficients.
taps = np.array([0.0625, 0.25 , 0.375 ,

0.25 , 0.0625])
Filtered signal. y has the same length as x.
y = convolve(x, taps, mode=’same’)

There are also convolution functions in scipy.ndimage.
The function scipy.ndimage.convolve1d provides an

DRAFT

8 PyData CookBook

axis argument, which allows all the signals stored in one
axis of a multidimensional array to be filtered with one call.
For example,

from scipy.ndimage import convolve1d

Make an 3-d array containing 1-d signals
to be filtered.
x = np.random.randn(3, 5, 50)
Apply the filter along the last dimension.
y = convolve1d(x, taps, axis=-1)

Note that scipy.ndimage.convolve1d has a different
set of options for its mode argument. Consult the docstring
for details.

Specialized functions that are FIR filters

The uniform filter and the Gaussian filter implemented
in scipy.ndimage are FIR filters. In the case of
one-dimensional time series, the specific functions are
uniform_filter1d and gaussian_filter1d.

The Savitzky-Golay filter [SavGol] is also a FIR filter. In
the module scipy.signal, SciPy provides the function
savgol_coeffs to create the coefficients of a Savitzy-
Golay filter. The function savgol_filter applies the
Savitzky-Golay filter to an input signal without returning the
filter coefficients.

FIR filter frequency response

The function scipy.signal.freqz computes the fre-
quency response of a linear filter represented as a transfer
function. This class of filters includes FIR filters, where the
representation of the numerator of the transfer function is the
array of taps and the denominator is the scalar a0 = 1.

As an example, we’ll compute the frequency response of
a uniformly weighted moving average. For a moving average
of length n, the coefficients in the FIR filter are simply 1/n.
Translated to NumPy code, we have taps = np.full(n,
fill_value=1.0/n).

The response curves in Figure 10 were generated with this
code:

for n in [3, 7, 21]:
taps = np.full(n, fill_value=1.0/n)
w, h = freqz(taps, worN=2000)
plt.plot(w, abs(h), label="n = %d" % n)

The function freqz returns the frequencies in units of radians
per sample, which is why the values on the abscissa in Figure
10 range from 0 to π . In calculations where we have a given
sampling frequency fs, we usually convert the frequencies
returned by freqz to dimensional units by multiplying by
fs/(2π).

FIR filter design

We’ll demonstrate how SciPy can be used to design a FIR
filter using the following four methods.
• The window method. The filter is designed by computing

the impulse response of the desired ideal filter and then
multiplying the coefficients by a window function.

• Least squares design. The weighted integral of the
squared frequency response error is minimized.

0 4 2
3
4

Frequency (radians/sample)

0.0

0.2

0.4

0.6

0.8

1.0

Ga
in

Amplitude Response for
Moving Average Filter

n = 3
n = 7
n = 21

Fig. 10: Frequency response of a simple moving average. n is the
number of taps (i.e. the length of the sliding window).

• Parks-McClellan equiripple design. A "minimax"
method, in which the maximum deviation from the
desired response is minimized.

• Linear programming. The "minimax" design problem can
be formulated as a linear programming problem.

In the following sections, we discuss each design method.
For this discussion, we define the following functions, where
ω is the frequency in radians per sample: A(ω), the filter’s
(real, signed) frequency response; D(ω), the desired frequency
response of the filter; and W (ω), the weight assigned to the
response error at ω (i.e. how "important" is the error A(ω)−
D(ω)).

FIR filter design: the window method

The window method for designing a FIR filter is to compute
the filter coefficients as the impulse response of the desired
ideal filter, and then multiply the coefficents by a window
function to both truncate the set of coefficients (thus making
a finite impulse response filter) and to shape the actual filter
response. Most textbooks on digital signal processing include
a discussion of the method; see, for example, Section 7.5 of
Oppenheim and Schafer [OS].

Two functions in the module scipy.signal implement
the window method, firwin and firwin2. Here we’ll show
an example of firwin2. We’ll use firwin when we discuss
the Kaiser window method.

We’ll design a filter with 185 taps for a signal that is
sampled at 2000 Hz. The filter is to be lowpass, with a linear
transition from the pass band to the stop band over the range
150 Hz to 175 Hz. We also want a notch in the pass band
between 48 Hz and 72 Hz, with sloping sides, centered at 60
Hz where the desired gain is 0.1. The dashed line in Figure
12 shows the desired frequency response.

To use firwin2, we specify the desired response at
the endpoints of a piecewise linear profile defined over the
frequency range [0, 1000] (1000 Hz is the Nyquist frequency).

freqs = [0, 48, 60, 72, 150, 175, 1000]
gains = [1, 1, 0.1, 1, 1, 0, 0]

DRAFT

SIGNAL PROCESSING WITH SCIPY: LINEAR FILTERS 9

0 92 184
Sample number

0.0

0.2

0.4

0.6

0.8

1.0
Window functions

Hamming
Kaiser, =2.70
rectangular

Fig. 11: Window functions used in the firwin2 filter design
example.

To illustrate the affect of the window on the filter, we’ll
demonstrate the design using three different windows: the
Hamming window, the Kaiser window with parameter β set
to 2.70, and the rectangular or "boxcar" window (i.e. simple
truncation without tapering).

The code to generate the FIR filters is

fs = 2000
numtaps = 185

window=None is equivalent to using the
rectangular window.
taps_none = firwin2(numtaps, freqs, gains,

nyq=0.5*fs, window=None)
The default window is Hamming.
taps_h = firwin2(numtaps, freqs, gains,

nyq=0.5*fs)
beta = 2.70
taps_k = firwin2(numtaps, freqs, gains,

nyq=0.5*fs, window=(’kaiser’, beta))

Figure 12 shows the frequency response of the three filters.

FIR filter design: least squares

The weighted least squares method creates a filter for which
the expression ∫

π

0
W (ω)(A(ω)−D(ω))2 dω (5)

is minimized. The function scipy.signal.firls im-
plements this method for piecewise linear desired response
D(ω) and piecewise constant weight function W (ω). Three
arguments (one optional) define the shape of the desired
response: bands, desired and (optionally) weights.

The argument bands is sequence of frequency values with
an even length. Consecutive pairs of values define the bands on
which the desired response is defined. The frequencies covered
by bands does not have to include the entire spectrum from
0 to the Nyquist frequency. If there are gaps, the response in
the gap is ignored (i.e. the gaps are "don’t care" regions).

The desired input array defines the amplitude of the
desired frequency response at each point in bands.

0 50 100 150 200
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Ga
in

185 taps

Filters designed with the window method

ideal
Hamming
Kaiser, =2.70
rectangular

Fig. 12: Frequency response for a filter designed using firwin2
with several windows. The ideal frequency response is a lowpass filter
with a ramped transition starting at 150 Hz. There is also a notch
with ramped transitions centered at 60 Hz.

The weight input, if given, must be an array with half the
length of bands. The values in weight define the weight of
each band in the objective function. A weight of 0 means the
band does not contribute to the result at all--it is equivalent to
leaving a gap in bands.

As an example, we’ll design a filter for a signal sampled at
200 Hz. The filter is a lowpass filter, with pass band [0, 15]
and stop band [30, 100], and we want the gain to vary linearly
from 1 down to 0 in the transition band [15, 30]. We’ll design
a FIR filter with 43 taps.

We create the arrays bands and desired as described
above:

bands = np.array([0, 15, 15, 30, 30, 100])
desired = np.array([1, 1, 1, 0, 0, 0])

Then we call firls:

numtaps = 43
taps1 = firls(numtaps, bands, desired, nyq=100)

The frequency response of this filter is the blue curve in Figure
13.

By default, the firls function weights the bands uni-
formly (i.e. W (ω)≡ 1 in Eqn. (5)). The weights argument
can be used to control the weight W (ω) on each band. The
argument must be a sequence that is half the length of bands.
That is, only piecewise constant weights are allowed.

Here we rerun firls, giving the most weight to the pass
band and the least weight to the transition band:

wts = [100, .01, 1]
taps2 = firls(numtaps, bands, desired, nyq=100,

weight=wts)

The frequency response of this filter is the orange curve in
Figure 13. As expected, the frequency response now deviates

DRAFT

10 PyData CookBook

0 15 30 100
0.0

0.5

1.0
Ga

in
Least Squares Filter Design

uniform weight
weight:[100, 0.01, 1]

0 15

0.99

1.00

1.01

Ga
in

30 100
Frequency (Hz)

0.00

0.01

0.02

Ga
in

Fig. 13: Result of a least squares FIR filter design. The desired
frequency response comprises three bands. On [0, 15], the desired
gain is 1 (a pass band). On [15, 30], the desired gain decreases
linearly from 1 to 0. The band [30, 100] is a stop band, where the
desired gain is 0. The filters have 43 taps. The middle and bottom
plots are details from the top plot.

more from the desired gain in the transition band, and the
ripple in the pass band is significantly reduced. The rejection
in the stop band is also improved.

Equivalence of least squares and the window method.
When uniform weights are used, and the desired result is

specified for the complete interval [0,π], the least squares
method is equivalent to the window method with no window
function (i.e. the window is the "boxcar" function). To verify
this numerically, it is necessary to use a sufficiently high value
for the nfreqs argument of firwin2.

Here’s an example:

>>> bands = np.array([0, 0.5, 0.5, 0.6, 0.6, 1])
>>> desired = np.array([1, 1, 1, 0.5, 0.5, 0])
>>> numtaps = 33
>>> taps_ls = firls(numtaps, bands, desired)
>>> freqs = bands[[0, 1, 3, 5]]
>>> gains = desired[[0, 1, 3, 5]]
>>> taps_win = firwin2(numtaps, freqs, gains,
... nfreqs=8193, window=None)
>>> np.allclose(taps_ls, taps_win)
True

In general, the window method cannot be used as a replace-
ment for the least squares method, because it does not provide
an option for weighting distinct bands differently; in particular,
it does not allow for "don’t care" frequency intervals (i.e.
intervals with weight 0).

FIR filter design: Parks-McClellan

The Parks-McClellan algorithm [PM] is based on the Remez
exchange algorithm [RemezAlg]. This is a "minimax" opti-
mization; that is, it miminizes the maximum value of |E(ω)|
over 0 ≤ ω ≤ π , where E(ω) is the (weighted) deviation
of the actual frequency response from the desired frequency
response:

E(ω) =W (ω)(A(ω)−D(ω)), 0≤ ω ≤ π, (6)

We won’t give a detailed description of the algorithm here;
most texts on digital signal processing explain the algorithm
(e.g. Section 7.7 of Oppenheim and Schafer [OS]). The method
is implemented in scipy.signal by the function remez.

As an example, we’ll design a bandpass filter for a signal
with a sampling rate of 2000 Hz using remez. For this filter,
we want the stop bands to be [0, 250] and [700, 1000], and the
pass band to be [350, 550]. We’ll leave the behavior outside
these bands unspecified, and see what remez gives us. We’ll
use 31 taps.

fs = 2000
bands = [0, 250, 350, 550, 700, 0.5*fs]
desired = [0, 1, 0]

numtaps = 31

taps = remez(numtaps, bands, desired, fs=fs)

The frequency response of this filter is the curve labeled (a)
in Fig. 14.

To reduce the ripple in the pass band while using the same
filter length, we’ll adjust the weights, as follows:

weights = [1, 25, 1]
taps2 = remez(numtaps, bands, desired, weights, fs=fs)

The frequency response of this filter is the curve labeled (b)
in Fig. 14.

It is recommended to always check the frequency response
of a filter designed with remez. Figure 15 shows the fre-
quency response of the filters when the number of taps is
increased from 31 to 47. The ripple in the pass and stop
bands is decreased, as expected, but the behavior of the filter
in the interval [550, 700] might be unacceptable. This type of
behavior is not unusual for filters designed with remez when
there are intervals with unspecified desired behavior.

In some cases, the exchange algorithm implemented in
remez can fail to converge. Failure is more likely when the
number of taps is large (i.e. greater than 1000). It can also
happen that remez converges, but the result does not have the
expected equiripple behavior in each band. When a problem
occurs, one can try increasing the maxiter argument, to
allow the algorithm more iterations before it gives up, and one
can try increasing grid_density to increase the resolution
of the grid on which the algorithm seeks the maximum of the
response errors.

FIR filter design: linear programming

The design problem solved by the Parks-McClellan method
can also be formulated as a linear programming problem
([Rabiner1972a], [Rabiner1972b]).

DRAFT

SIGNAL PROCESSING WITH SCIPY: LINEAR FILTERS 11

0 200 400 600 800 1000
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Ga
in

31 taps

Bandpass filters designed with remez

(a)
(b)

Fig. 14: Frequency response of bandpass filters designed using
scipy.signal.remez. The stop bands are [0, 250] and [700,
1000], and the pass band is [350, 550]. The shaded regions are
the "don’t care" intervals where the desired behavior of the filter
is unspecified. The curve labeled (a) uses the default weights--each
band is given the same weight. For the curve labeled (b), weight =
[1, 25, 1] was used.

0 200 400 600 800 1000
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Ga
in

47 taps

Bandpass filters designed with remez

(a)
(b)

Fig. 15: This plot shows the results of the same calculation that
produced Figure 14, but the number of taps has been increased from
31 to 47. Note the possibly undesirable behavior of the filter in the
transition interval [550, 700].

To implement this method, we’ll use the function linprog
from scipy.optimize. In particular, we’ll use the interior
point method that was added in SciPy 1.0. In the following,
we first review the linear programming formulation, and then
we discuss the implementation.

Formulating the design problem as a linear program.
Like the Parks-McClellan method, this approach is a "mini-
max" optimization of Eq. (6). We’ll give the formulation for a
Type I filter design (that is, an odd number of taps with even
symmetry), but the same ideas can be applied to other FIR
filter types.

For convenience, we’ll consider the FIR filter coefficients

for a filter of length 2R+1 using centered indexing:

b−R ,b−R+1 , . . . ,b−1 ,b0 ,b1 , . . . ,bM−1 ,bR

Consider a sinusoidal signal with frequency ω radians per
sample. The frequency response can be written

A(ω) =
R

∑
i=−R

bi cos(ωi) = b0 +
R

∑
i=0

2bi cos(ωi) =
R

∑
i=0

pi cos(ωi)

where we define p0 = b0 and, for 1≤ i≤ R, pi = 2bi . We’ve
used the even symmetry of the cosine function and the of filter
coefficients about the middle coefficient (b−i = bi).

The "minimax" problem is to minimize the maximum error.
That is, choose the filter coefficients such that

|E(ω)| ≤ ε for 0≤ ω ≤ π

for the smallest possible value of ε . After substituting the
expression for E(ω) from Eqn. (6), replacing the absolute
value with two inequalities, and doing a little algebra, the
problem can be written as

minimize ε

over
{

p0 , p1 , . . . , pR , ε
}

subject to A(ω)− ε

W (ω)
≤ D(ω)

and −A(ω)− ε

W (ω)
≤−D(ω)

ω is a continuous variable in the above formulation. To
implement this as a linear programming problem, we use
a suitably dense grid of L frequencies ω0 ,ω1 , . . . ,ωL−1 (not
necessarily uniformly spaced). We define the L× (R + 1)
matrix C as

Ci j = cos(ωi−1(j−1)), 1≤ i≤ L and 1≤ j ≤ R+1 (7)

Then the vector of frequency responses is the matrix product
Cp, where p = [p0 , p1 , . . . , pR]

T.
Let dk = D(ωk), and d = [d0 ,d1 , . . . ,dL−1]

T. Similarly, de-
fine v = [v0 ,v1 , . . . ,vL−1]

T, where vk = 1/W (ωk). The linear
programming problem is

minimize ε

over
{

p0 , p1 , . . . , pR , ε
}

subject to
[

C −v
−C −v

][
p
ε

]
≤
[

d
−d

]
This is the formulation that can be used with, for example,
scipy.optimize.linprog.

This formulation, however, provides no advantages over the
solver provided by remez, and in fact it is generally much
slower and less robust than remez. When designing a filter
beyond a hundred or so taps, there is much more likely to be
a convergence error in the linear programming method than in
remez.

The advantage of the linear programming method is its
ability to easily handle additional constraints. Any constraint,
either equality or inequality, that can be written as a linear
constraint can be added to the problem.

DRAFT

12 PyData CookBook

We will demonstrate how to implement a lowpass filter
design using linear programming with the constraint that the
gain for a constant input is exactly 1. That is,

A(0) =
R

∑
i=0

pi = 1

which may be written

Aeq

[
p
ε

]
= 1,

where Aeq = [1,1, . . . ,1,0].
Implementing the linear program. Let’s look at the code

required to set up a call to linprog to design a lowpass
filter with a pass band of [0,ωp] and a stop band of [ωs,π],
where the frequencies ωp and ωs are expressed in radians per
sample, and 0<ωp <ωs < π . We’ll also impose the constraint
that A(0) = 1.

A choice for the density of the frequency samples on [0,π]
that works well is 16N, where N is the number of taps
(numtaps in the code). Then the number of samples in the
pass band and the stop band can be computed as

density = 16*numtaps/np.pi
numfreqs_pass = int(np.ceil(wp*density))
numfreqs_stop = int(np.ceil((np.pi - ws)*density))

The grids of frequencies on the pass and stop bands are then

wpgrid = np.linspace(0, wp, numfreqs_pass)
wsgrid = np.linspace(ws, np.pi, numfreqs_stop)

We will impose an equality constraint on A(0), so we can
can remove that frequency from wpgrid--there is no point in
requiring both the equality and inequality constraints at ω = 0.
Then wpgrid and wsgrid are concatenated to form wgrid,
the grid of all the frequency samples.

wpgrid = wpgrid[1:]
wgrid = np.concatenate((wpgrid, wsgrid))

Let wtpass and wtstop be the constant weights that we
will use in the pass and stop bands, respectively. We create
the array of weights on the grid with

weights = np.concatenate(
(np.full_like(wpgrid, fill_value=wtpass),
np.full_like(wsgrid, fill_value=wtstop)))

The desired values of the frequency response are 1 in the pass
band and 0 in the stop band. Evaluated on the grid, we have

desired = np.concatenate((np.ones_like(wpgrid),
np.zeros_like(wsgrid)))

Now we implement Eq. (7) and create the L×(R+1) array of
coefficients C that are used to compute the frequency response,
where R = M/2:

R = (numtaps - 1)//2
C = np.cos(wgrid[:, np.newaxis]*np.arange(R+1))

The column vector of the reciprocals of the weights is

V = 1/weights[:, np.newaxis]

0 0.16
Frequency (radians/sample)

0.999

1.000

1.001

1.002

Ga
in

Pass band detail

linear programming, H(0)=1
remez

Fig. 16: Result of solving a lowpass FIR filter design problem
by linear programming with the constraint A(0) = 1. The response
without the extra constraint, solved using remez, is also plotted.

Next we assemble the pieces that define the inequality con-
straints that are actually passed to linprog:

A = np.block([[C, -V],
[-C, -V]])

b = np.block([[desired, -desired]]).T
c = np.zeros(M+2)
c[-1] = 1

In code, the arrays for the equality constraint needed to define
A(0) = 1 are:

A_eq = np.ones((1, R+2))
A_eq[:, -1] = 0
b_eq = np.array([1])

Finally, we set up and call linprog:

options = dict(maxiter=5000, tol=1e-6)
sol = linprog(c, A, b, A_eq=A_eq, b_eq=b_eq,

bounds=(None, None),
method=’interior-point’,
options=options)

if sol.success:
p = sol.x[:-1]
taps = 0.5*np.concatenate((p[:0:-1],

[2*p[0]],
p[1:]))

Notes:

• For different problems, the parameters defined in the
dictionary options may have to be adjusted. See the
documentation for linprog for more details.

• By default, linprog assumes that all the variables must
be nonnegative. We use the bounds argument to override
that behavior.

• We have had more success using the interior point method
than the default simplex method.

See Figure 16 for a plot of the pass band response of
the filter designed using linprog. The number of taps was
N = 81, and the transition boundary frequencies, expressed in
radians per sample, were ωp = 0.16π and ωs = 0.24π . For the
weight in each band we used wtpass = 2 and wtstop =
1.

DRAFT

SIGNAL PROCESSING WITH SCIPY: LINEAR FILTERS 13

Determining the order of a FIR filter

Most of the filter design tools in SciPy require the number of
taps as an input. Typically, however, a designer has require-
ments on the pass band ripple and the stop band rejection,
and wants the FIR filter with the minimum number of taps
that satisfies these requirements. The diagram shown in Figure
17 illustrates the design parameters for a lowpass filter. The
graph of the magnitude of the frequency response of the filter
must not enter the shaded area. The parameter δp defines
the allowed pass band ripple, and δs defines the required
attenuation in the stop band. The maximum width of the
transition from the pass band to stop band is ∆ω , and the
cutoff frequency ωc is centered in the transition band.

In the next two sections, we’ll consider the following filter
design problem. We need a lowpass filter for a signal that
is sampled at 1000 Hz. The desired cutoff frequency is 180
Hz, and the transition from the pass band to the stop band
must not exceed 30 Hz. In the pass band, the gain of the filter
should deviate from 1 by no more than 0.005 (i.e. worst case
ripple is 0.5%). In the stop band, the gain must be less than
0.002 (about 54 dB attenuation). In the next section, we’ll
tackle the design using the Kaiser window method. After that,
we’ll obtain an optimal design by using the Parks-McClellan
method.

Kaiser’s window method

The Kaiser window is a window function with a parameter β

that controls the shape of the function. An example of a Kaiser
window is plotted in Figure 11. Kaiser [Kaiser66], [Kaiser74]
developed formulas that, for a given transition width ∆ω and
error tolerance for the frequency response, determine the order
M and the parameter β required to meet the requirements.
Summaries of the method can be found in many sources,
including Sections 7.5.3 and 7.6 of the text by Oppenheim
and Schafer [OS].

In Kaiser’s method, there is only one parameter that con-
trols the passband ripple and the stopband rejection. That is,
Kaiser’s method assumes δp = δs. Let δ be that common value.
The stop band rejection in dB is −20log10(δ). This value (in
dB) is the first argument of the function kaiserord. One
can interpret the argument ripple as the maximum deviation
(expressed in dB) allowed in |A(ω)−D(ω)|, where A(ω) is
the magnitude of the actual frequency response of the filter
and D(ω) is the desired frequency response. (That is, in the
pass band, D(ω) = 1, and in the stop band, D(ω) = 0.) In
Figure 18, the bottom plot shows |A(ω)−D(ω)|.

The Kaiser window design method, then, is to de-
termine the length of the filter and the Kaiser win-
dow parameter β using Kaiser’s formula (implemented in
scipy.signal.kaiserord), and then design the filter
using the window method with a Kaiser window (using, for
example, scipy.signal.firwin):
numtaps, beta = kaiserord(ripple, width)
taps = firwin(numtaps, cutoff,

window=(’kaiser’, beta),
[other args as needed])

For our lowpass filter design problem, we first define the input
parameters:

0 c

Frequency (radians per sample)

0
s

1 p

1
1 + p

|H
(e

j
)|

Lowpass Filter Design Specifications

Fig. 17: Lowpass filter design specifications. The magnitude of the
frequency response of the filter should not enter the shaded regions.

Frequency values in Hz
fs = 1000.0
cutoff = 180.0
width = 30.0
Desired pass band ripple and stop band attenuation
deltap = 0.005
deltas = 0.002

As already mentioned, the Kaiser method allows for only
a single parameter to constrain the approximation error. To
ensure we meet the design criteria in the pass and stop bands,
we take the minimum of δp and δs:
delta = min(deltap, deltas)

The first argument of kaiserord must be expressed in dB,
so we set:
delta_db = -20*np.log10(delta)

Then we call kaiserord to determine the number of taps
and the Kaiser window parameter β :
numtaps, beta = kaiserord(delta_db, width/(0.5*fs))
numtaps |= 1 # Must be odd for a Type I FIR filter.

For our lowpass filter design problem, we find numtaps is
109 and β is 4.990.

Finally, we use firwin to compute the filter coefficients:
taps = firwin(numtaps, cutoff/(0.5*fs),

window=(’kaiser’, beta), scale=False)

The results of the Kaiser method applied to our lowpass filter
design problem are plotted in Figure 18. The tip of the right-
most ripple in the pass band violates the δ -constraint by a very
small amount; this is not unusual for the Kaiser method. In
this case, it is not a problem, because the original requirement
for the pass band is δp = 0.005, so the behavior in the pass
band is overly conservative.

Optimizing the FIR filter order

The Kaiser window method can be used to create a filter
that meets (or at least is very close to meeting) the design
requirements, but it will not be optimal. That is, generally
there will exist FIR filters with fewer taps that also satisfy the
design requirements. At the time this chapter is being written,
SciPy does not provide a tool that automatically determines

DRAFT

14 PyData CookBook

0 100 200 300 400 500

50

0
Ga

in
 (d

B)
Kaiser Window Filter Design

0 50 100 150

0.998

1.000

1.002

Ga
in

0 100 200 300 400 500
Frequency (Hz)

0.000

0.001

0.002

|A
(

) -
 D

(
)|

Fig. 18: Result of the Kaiser window filter design of a lowpass
filter. The number of taps is 109. Top: Magnitude (in dB) of the
frequency response. Middle: Detail of the frequency response in the
pass band. Bottom: The deviation of the actual magnitude of the
frequency response from that of the ideal lowpass filter.

the optimal number of taps given pass band ripple and stop
band rejection requirements. It is not difficult, however, to use
the existing tools to find an optimal filter in a few steps (at
least if the filter order is not too large).

Here we show a method that works well, at least for
the basic lowpass, highpass, bandpass and bandstop filters
on which it has been tested. The idea: given the design
requirements, first estimate the length of the filter. Create a
filter of that length using remez, with 1/δp and 1/δs as
the weights for the pass and stop bands, respectively. Check
the frequency response of the filter. If the initial estimate of
the length was good, the filter should be close to satisfying
the design requirements. Based on the observed frequency
response, adjust the number of taps, then create a new filter
and reevaluate the frequency response. Iterate until the shortest
filter that meets the design requirements is found. For moderate
sized filters (up to 1000 or so taps), this simple iterative
process can be automated. (For higher order filters, this method
has at least two weaknesses: it might be difficult to get a
reasonably accurate estimate of the filter length, and it is more
likely that remez will fail to converge.)

A useful formula for estimating the length of a FIR filter
was given by Bellanger [Bellanger]:

N ≈−2
3

log10 (10δpδs)
fs

∆ f
(8)

which has a straightforward Python implementation:

def bellanger_estimate(deltap, deltas, width, fs):
n = (-2/3)*np.log10(10*deltap*deltas)*fs/width
n = int(np.ceil(n))
return n

We’ll apply this method to the lowpass filter design problem
that was described in the previous section. As before, we
define the input parameters:

Frequency values in Hz
fs = 1000.0
cutoff = 180.0
width = 30.0
Desired pass band ripple and stop band attenuation
deltap = 0.005
deltas = 0.002

Then the code

numtaps = bellanger_estimate(deltap, deltas,
width, fs)

numtaps |= 1

gives numtaps = 89. (Compare this to the result of the
Kaiser method, where numtaps is 109.)

Now we’ll use remez to design the filter.

trans_lo = cutoff - 0.5*width
trans_hi = cutoff + 0.5*width
taps = remez(numtaps,

bands=[0, trans_lo,
trans_hi, 0.5*fs],

desired=[1, 0],
weight=[1/deltap, 1/deltas],
fs=fs)

The frequency response of the filter is shown in Figure 19.
We see that the filter meets the design specifications. If we
decrease the number of taps to 87 and check the response, we
find that the design specifications are no longer met, so we
accept 89 taps as the optimum.

REFERENCES

[Bellanger] M. Bellanger, Digital Processing of Signals: Theory and
Practice (3rd Edition), Wiley, Hoboken, NJ, 2000.

[Kaiser66] J. F. Kaiser, Digital filters, in System Analysis by Digital
Computer, Chapter 7, F. F. Kuo and J. F. Kaiser, eds., Wiley,
New York, NY, 1966

[Kaiser74] J. F. Kaiser, Nonrecursive digital filter design using the I0-
sinh window function, Proc. 1974 IEEE International Symp.
on Circuits and Systems, San Francisco, CA, 1974.

[Lyons] Richard G. Lyons. Understanding Digital Signal Processing
(2nd ed.), Pearson Higher Education, Inc., Upper Saddle
River, New Jersey (2004)

[OS] Alan V. Oppenheim, Ronald W. Schafer. Discrete-Time Sig-
nal Processing (3rd ed.), Pearson Higher Education, Inc.,
Upper Saddle River, New Jersey (2010)

[PM] Parks-McClellan filter design algorithm. Wikipedia,
https://en.wikipedia.org/wiki/Parks%E2%80%93McClellan_
filter_design_algorithm

[Rabiner1972a] L. R. Rabiner, The design of finite impulse response digital
filters using linear programming techniques, The Bell System
Technical Journal, Vol. 51, No. 6, July-August, 1972.

[Rabiner1972b] L. R. Rabiner, Linear program design of finite impulse
response (FIR) digital filters, IEEE Trans. on Audio and
Electroacoustics, Vol. AU-20, No. 4, Oct. 1972.

[RemezAlg] Remez algorithm. Wikipedia,
https://en.wikipedia.org/wiki/Remez_algorithm

[SavGol] A. Savitzky, M. J. E. Golay. Smoothing and Differentiation
of Data by Simplified Least Squares Procedures. Analytical
Chemistry, 1964, 36 (8), pp 1627-1639.

https://en.wikipedia.org/wiki/Parks%E2%80%93McClellan_filter_design_algorithm
https://en.wikipedia.org/wiki/Parks%E2%80%93McClellan_filter_design_algorithm

DRAFT

SIGNAL PROCESSING WITH SCIPY: LINEAR FILTERS 15

0 100 200 300 400 500

50

0

Ga
in

 (d
B)

30 Hz

Lowpass Filter
Optimal Remez Design

0 50 100 150

0.995
1.000
1.005

Ga
in

0 100 200 300 400 500
Frequency (Hz)

0.000

0.002

0.004

|A
(

) -
 D

(
)|

Fig. 19: Optimal lowpass filter frequency response. The number of
taps is 89.

[SO] Nimal Naser, How to filter/smooth with SciPy/Numpy?,
https://stackoverflow.com/questions/28536191

	Contents
	Introduction
	IIR filters in scipy.signal
	IIR filter representation
	Lowpass filter
	Initializing a lowpass filter
	Bandpass filter
	Filtering a long signal in batches
	Solving linear recurrence relations

	FIR filters in scipy.signal
	Apply a FIR filter
	Specialized functions that are FIR filters
	FIR filter frequency response
	FIR filter design
	FIR filter design: the window method
	FIR filter design: least squares
	FIR filter design: Parks-McClellan
	FIR filter design: linear programming
	Determining the order of a FIR filter
	Kaiser's window method
	Optimizing the FIR filter order

	References

