Benini Distribution

The Benini distribution has the probability density function

\[f(x, \alpha, \beta, \sigma) = e^{\theta(x, \alpha, \beta, \sigma)} \left( \frac{\alpha}{x} + \frac{2\beta\log\left(\frac{x}{\sigma}\right)}{x} \right)\]

and cumulative distribution function

\[F(x, \alpha, \beta, \sigma) = 1 - e^{\theta(x, \alpha, \beta, \sigma)}\]

where

\[\theta(x, \alpha, \beta, \sigma) = -\alpha \log\left(\frac{x}{\sigma}\right) - \beta \log\left(\frac{x}{\sigma}\right)^2\]

\(\alpha\) and \(\beta\) are shape parameters; \(\sigma\) is a scale parameter.

The support is \(x > \sigma\).

See

  • Kleiber, Christian; Kotz, Samuel (2003). “Chapter 7.1: Benini Distribution”, Statistical Size Distributions in Economics and Actuarial Sciences. Wiley. ISBN 978-0-471-15064-0.

  • “Benini distribution”, Wikipedia, https://en.wikipedia.org/wiki/Benini_distribution

mpsci.distributions.benini.cdf(x, alpha, beta, scale)

Cumulative distribution function of the Benini distribution.

mpsci.distributions.benini.invcdf(p, alpha, beta, scale)

Inverse CDF of the Benini distribution.

mpsci.distributions.benini.invsf(p, alpha, beta, scale)

Inverse survival function of the Benini distribution.

mpsci.distributions.benini.logcdf(x, alpha, beta, scale)

Natural logarithm of the CDF of the Benini distribution.

mpsci.distributions.benini.logpdf(x, alpha, beta, scale)

Natural logarithm of the PDF of the Benini distribution.

mpsci.distributions.benini.logsf(x, alpha, beta, scale)

Natural logarithm of the survival function of the Benini distribution.

mpsci.distributions.benini.mean(alpha, beta, scale)

Mean of the Benini distribution.

mpsci.distributions.benini.pdf(x, alpha, beta, scale)

Probability density function of the Benini distribution.

mpsci.distributions.benini.sf(x, alpha, beta, scale)

Cumulative distribution function of the Benini distribution.

mpsci.distributions.benini.var(alpha, beta, scale)

Variance of the Benini distribution.