Beta probability distribution

This is the “standard” beta distribution, with shape parameters a and b, and support on the interval [0, 1].

mpsci.distributions.beta.cdf(x, a, b)

Cumulative distribution function of the beta distribution.

mpsci.distributions.beta.entropy(a, b)

Differential entropy of the beta distribution.

mpsci.distributions.beta.interval_prob(x1, x2, a, b)

Compute the probability of x in [x1, x2] for the beta distribution.

Mathematically, this is the same as

beta.cdf(x2, a, b) - beta.cdf(x1, a, b)

but when the two CDF values are nearly equal, this function will give a more accurate result.

x1 must be less than or equal to x2.

mpsci.distributions.beta.invcdf(p, a, b)

Inverse of the CDF of the beta distribution.

mpsci.distributions.beta.invsf(p, a, b)

Inverse of the survival function of the beta distribution.

mpsci.distributions.beta.kurtosis(a, b)

Excess kurtosis of the beta distribution.

mpsci.distributions.beta.logpdf(x, a, b)

Natural logarithm of the PDF of the beta distribution.

mpsci.distributions.beta.mean(a, b)

Mean of the beta distribution.

mpsci.distributions.beta.mle(x, *, a=None, b=None)

Maximum likelihood estimation for the beta distribution.

mpsci.distributions.beta.mom(x)

Method of moments parameter estimation for the beta distribution.

x must be a sequence of numbers from the interval (0, 1).

Returns (a, b).

mpsci.distributions.beta.nll(x, a, b)

Negative log-likelihood for the beta distribution.

mpsci.distributions.beta.noncentral_moment(n, a, b)

n-th noncentral moment of the beta distribution.

n must be a nonnegative integer.

mpsci.distributions.beta.pdf(x, a, b)

Probability density function (PDF) for the beta distribution.

mpsci.distributions.beta.sf(x, a, b)

Survival function of the beta distribution.

mpsci.distributions.beta.skewness(a, b)

Skewness of the beta distribution.

mpsci.distributions.beta.support(a, b)

Support of the beta distribution.

mpsci.distributions.beta.var(a, b)

Variance of the beta distribution.