Beta probability distribution¶
This is the “standard” beta distribution, with shape parameters a and b, and support on the interval [0, 1].
- mpsci.distributions.beta.cdf(x, a, b)¶
Cumulative distribution function of the beta distribution.
- mpsci.distributions.beta.entropy(a, b)¶
Differential entropy of the beta distribution.
- mpsci.distributions.beta.interval_prob(x1, x2, a, b)¶
Compute the probability of x in [x1, x2] for the beta distribution.
Mathematically, this is the same as
beta.cdf(x2, a, b) - beta.cdf(x1, a, b)
but when the two CDF values are nearly equal, this function will give a more accurate result.
x1 must be less than or equal to x2.
- mpsci.distributions.beta.invcdf(p, a, b)¶
Inverse of the CDF of the beta distribution.
- mpsci.distributions.beta.invsf(p, a, b)¶
Inverse of the survival function of the beta distribution.
- mpsci.distributions.beta.kurtosis(a, b)¶
Excess kurtosis of the beta distribution.
- mpsci.distributions.beta.logpdf(x, a, b)¶
Natural logarithm of the PDF of the beta distribution.
- mpsci.distributions.beta.mean(a, b)¶
Mean of the beta distribution.
- mpsci.distributions.beta.mle(x, *, a=None, b=None)¶
Maximum likelihood estimation for the beta distribution.
- mpsci.distributions.beta.mom(x)¶
Method of moments parameter estimation for the beta distribution.
x must be a sequence of numbers from the interval (0, 1).
Returns (a, b).
- mpsci.distributions.beta.nll(x, a, b)¶
Negative log-likelihood for the beta distribution.
- mpsci.distributions.beta.noncentral_moment(n, a, b)¶
n-th noncentral moment of the beta distribution.
n must be a nonnegative integer.
- mpsci.distributions.beta.pdf(x, a, b)¶
Probability density function (PDF) for the beta distribution.
- mpsci.distributions.beta.sf(x, a, b)¶
Survival function of the beta distribution.
- mpsci.distributions.beta.skewness(a, b)¶
Skewness of the beta distribution.
- mpsci.distributions.beta.support(a, b)¶
Support of the beta distribution.
- mpsci.distributions.beta.var(a, b)¶
Variance of the beta distribution.