Inverse Gaussian distribution¶
This implementation uses the same parameterization as the SciPy
implementation in scipy.stats.invgauss, except the shape parameter
is called m
instead of mu
, to avoid confusion with the common use
of mu
in other parametrizations. loc and scale are the standard
location and scale parameters.
A slightly different parametrization is more commonly used (e.g.
the Wikipedia article “Inverse Gaussian distribion” [1],
NumPy’s numpy.random.Generator.wald, Wolfram Alpha’s
InverseGaussianDistribution). (The parameters μ and λ of
the Wikipedia article and Wolfram are the same as the mean
and scale
parameters of NumPy’s wald
distribution,
respectively.)
To convert from the mpsci parametrization (m
, loc
, scale
)
to the more common one, loc
must be 0. Then:
μ = m*scale
λ = scale
To go the other way:
m = μ/λ
loc = 0
scale = λ
- mpsci.distributions.invgauss.cdf(x, m, loc=0, scale=1)¶
CDF for the inverse Gaussian distribution.
- mpsci.distributions.invgauss.entropy(m, loc=0, scale=1)¶
Differential entropy of the inverse Gaussian distribution.
- mpsci.distributions.invgauss.invcdf(p, m, loc=0, scale=1)¶
Inverse of the CDF for the inverse Gaussian distribution.
- mpsci.distributions.invgauss.invsf(p, m, loc=0, scale=1)¶
Inverse of the survival function for the inverse Gaussian distribution.
- mpsci.distributions.invgauss.logcdf(x, m, loc=0, scale=1)¶
Logarithm of the CDF for the inverse Gaussian distribution.
- mpsci.distributions.invgauss.logpdf(x, m, loc=0, scale=1)¶
Logarithm of the PDF for the inverse Gaussian distribution.
- mpsci.distributions.invgauss.logsf(x, m, loc=0, scale=1)¶
Logarithm of the survival function for the inverse Gaussian distribution.
- mpsci.distributions.invgauss.mean(m, loc=0, scale=1)¶
Mean of the inverse Gaussian distribution.
- mpsci.distributions.invgauss.median(m, loc=0, scale=1)¶
Median of the inverse Gaussian distribution.
- mpsci.distributions.invgauss.mode(m, loc=0, scale=1)¶
Mode of the inverse Gaussian distribution.
- mpsci.distributions.invgauss.noncentral_moment(n, m, loc=0, scale=1)¶
Noncentral moment of the generalized extreme value distribution.
The value is also known as the raw moment.
- mpsci.distributions.invgauss.pdf(x, m, loc=0, scale=1)¶
PDF for the inverse Gaussian distribution.
- mpsci.distributions.invgauss.sf(x, m, loc=0, scale=1)¶
Survival function for the inverse Gaussian distribution.
- mpsci.distributions.invgauss.support(m, loc=0, scale=1)¶
Support of the inverse Gaussian distribution.
- mpsci.distributions.invgauss.var(m, loc=0, scale=1)¶
Variance of the inverse Gaussian distribution.