Log-gamma probability distribution¶
k is the shape parameter of the gamma distribution.
theta is the scale parameter of the log-gamma distribution.
In SciPy, this distribution is implemented as scipy.stats.loggamma.
In the Wolfram language, this distribution is called ExpGammaDistribution.
Unlike SciPy and Wolfram, a location parameter is not included in this implementation of the log-gamma distribution.
- mpsci.distributions.loggamma.cdf(x, k, theta)¶
Cumulative distribution function of the log-gamma distribution.
k is the shape parameter of the gamma distribution. theta is the scale parameter of the log-gamma distribution.
- mpsci.distributions.loggamma.interval_prob(x1, x2, k, theta)¶
Compute the probability of x in [x1, x2] for the log-gamma distribution.
Mathematically, this is the same as
loggamma.cdf(x2, k, theta) - loggamma.cdf(x1, k, theta)
but when the two CDF values are nearly equal, this function will give a more accurate result.
x1 must be less than or equal to x2.
k is the shape parameter of the gamma distribution. theta is the scale parameter of the log-gamma distribution.
- mpsci.distributions.loggamma.invcdf(p, k, theta)¶
Inverse of the CDF for the log-gamma distribution.
Also known as the quantile function.
k is the shape parameter of the gamma distribution. theta is the scale parameter of the log-gamma distribution.
- mpsci.distributions.loggamma.invsf(p, k, theta)¶
Inverse of the survival functin for the log-gamma distribution.
k is the shape parameter of the gamma distribution. theta is the scale parameter of the log-gamma distribution.
- mpsci.distributions.loggamma.kurtosis(k, theta)¶
Excess kurtosis of the log-gamma distribution.
k is the shape parameter of the gamma distribution. theta is the scale parameter of the log-gamma distribution.
- mpsci.distributions.loggamma.logpdf(x, k, theta)¶
Log of the PDF of the log-gamma distribution.
k is the shape parameter of the gamma distribution. theta is the scale parameter of the log-gamma distribution.
- mpsci.distributions.loggamma.mean(k, theta)¶
Mean of the log-gamma distribution.
k is the shape parameter of the gamma distribution. theta is the scale parameter of the log-gamma distribution.
- mpsci.distributions.loggamma.mle(x, *, k=None, theta=None)¶
Maximum likelihood estimation for the log-gamma distribution.
x must be a sequence of numbers.
- mpsci.distributions.loggamma.nll(x, k, theta)¶
Negative log-likelihood for the log-gamma distribution.
x must be a sequence of numbers.
- mpsci.distributions.loggamma.pdf(x, k, theta)¶
Probability density function for the log-gamma distribution.
k is the shape parameter of the gamma distribution. theta is the scale parameter of the log-gamma distribution.
- mpsci.distributions.loggamma.sf(x, k, theta)¶
Survival function of the log-gamma distribution.
k is the shape parameter of the gamma distribution. theta is the scale parameter of the log-gamma distribution.
- mpsci.distributions.loggamma.skewness(k, theta)¶
Variance of the log-gamma distribution.
k is the shape parameter of the gamma distribution. theta is the scale parameter of the log-gamma distribution.
- mpsci.distributions.loggamma.support(k, theta)¶
Support of the log-gamma distribution.
k is the shape parameter of the gamma distribution. theta is the scale parameter of the log-gamma distribution.
- mpsci.distributions.loggamma.var(k, theta)¶
Variance of the log-gamma distribution.
k is the shape parameter of the gamma distribution. theta is the scale parameter of the log-gamma distribution.