Log-series distribution¶
This discrete distributions is also known as the logarithmic distribution [1].
- mpsci.distributions.logseries.cdf(k, p)¶
CDF of the log-series distribution.
- mpsci.distributions.logseries.kurtosis(p)¶
Excess kurtosis of the log-series distribution.
- mpsci.distributions.logseries.logpmf(k, p)¶
Natural log of the PMF of the log-series distribution.
- mpsci.distributions.logseries.mean(p)¶
Mean of the log-series distribution.
- mpsci.distributions.logseries.mle(x, *, counts=None)¶
Maximum likelihood estimation for the log-series distribution.
Examples
>>> from mpsci.distributions import logseries >>> from mpmath import mp >>> mp.dps = 40
>>> x = [1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2] >>> logseries.mle(x) mpf('0.3500385397570795760273865807843594135596862')
>>> values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] >>> counts = [10, 4, 5, 2, 0, 2, 5, 1, 4, 0, 3] >>> logseries.mle(values, counts=counts) mpf('0.9207611550739465028229025367922360801454828')
- mpsci.distributions.logseries.mode(p)¶
Mode of the log-series distribution.
- mpsci.distributions.logseries.nll(x, p, *, counts=None)¶
Negative log-likelihood of the log-series distribution.
- mpsci.distributions.logseries.pmf(k, p)¶
Probability mass function of the log-series distribution.
- mpsci.distributions.logseries.sf(k, p)¶
Survival function of the log-series distribution.
- mpsci.distributions.logseries.skewness(p)¶
Skewness of the log-series distribution.
- mpsci.distributions.logseries.support(p)¶
Support of the log-series distribution.
The support is the integers 1, 2, 3, …, so the support is returned as an instance of itertools.count(start=1).
Examples
>>> from mpsci.distributions import logseries >>> sup = logseries.support() >>> next(sup) 1 >>> next(sup) 2
- mpsci.distributions.logseries.var(p)¶
Variance of the log-series distribution.