Poisson distribution¶
- mpsci.distributions.poisson.cdf(k, lam)¶
CDF of the Poisson distribution.
- mpsci.distributions.poisson.kurtosis(lam)¶
Excess kurtosis of the Poisson distribution.
- mpsci.distributions.poisson.logpmf(k, lam)¶
Natural log of the probability mass function of the binomial distribution.
- mpsci.distributions.poisson.mean(lam)¶
Mean of the Poisson distribution.
- mpsci.distributions.poisson.mle(x, *, counts=None)¶
Maximum likelihood estimate for the Poisson distribution.
x must be a sequence of numbers that are presumed to be a sample from a Poisson distribution.
Returns lambda, the estimated parameter of the Poisson distribution.
- mpsci.distributions.poisson.nll(x, lam, *, counts=None)¶
Negative log-likelihood of the Poisson distribution.
x must be a sequence of nonnegative integers.
- mpsci.distributions.poisson.pmf(k, lam)¶
Probability mass function of the Poisson distribution.
- mpsci.distributions.poisson.sf(k, lam)¶
Survival function of the Poisson distribution.
- mpsci.distributions.poisson.skewness(lam)¶
Skewness of the Poisson distribution.
- mpsci.distributions.poisson.support(lam)¶
Support of the Poisson distribution.
The support is the integers 0, 1, 2, 3, …, so the support is returned as an instance of itertools.count(start=0).
Examples
>>> from mpsci.distributions import poisson >>> sup = poisson.support() >>> next(sup) 0 >>> next(sup) 1
- mpsci.distributions.poisson.var(lam)¶
Variance of the Poisson distribution.